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The Kenics static mixer: a three-dimensional chaotic flow

D.M. Hobbs, F.J. Muzzio U

Department of Chemical and Biochemical Engineering, Rutgers University, P.O. Box 909, Piscataway, NJ 08855, USA

Received 6 June 1996; revised 10 January 1997; accepted 3 February 1997

Abstract

The Kenics static mixer was investigated numerically using Lagrangian methods to characterize mixer performance for low Reynolds
number flows. Particle tracking simulations were used to compute residence time distributions, striation evolution, and variation coefficient
as a function of the number of mixer elements. The mixing measures calculated from the numerical simulation agree closely with reported
experimental results from the literature. Stretching of material elements in the mixer flow was also computed. The average stretching of
material elements increased exponentially with the number of periodic mixer segments (a signature of chaotic flows). The probability density
function of the logarithm of stretching values, Hn(log10l), had a Gaussian distribution over the central spectrum of stretching intensities, with
no deviations from the Gaussian profile at low stretching intensities, suggesting a globally chaotic flow. A significant tail of high stretching
intensities was found. The spatial locations of points with the highest stretching values corresponded to the manifolds of two period-1
hyperbolic points present in the flow. q 1997 Published by Elsevier Science S.A.
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1. Introduction

Mixing is ubiquitous and essential in many facets of the
chemical process industries, ranging from simple blending to
complex chemical reactions for which the reaction yield and
selectivity are highly dependent on the mixing performance.
Improper mixing can result in non-reproducible processing
and lowered product quality, with the associated need for
more elaborate downstream purification processes and
increased waste disposal costs. However, despite its impor-
tance, mixing performance is rarely characterized rigorously
for industrial systems. Detailed characterizations are impor-
tant, particularly in slow moving, high viscosity, laminar
flows, which have a significant potential to lead to inhomo-
geneity and poorly mixed regions within the flow system.

Significant advances have been made in the study of fluid
mechanical mixing using tools from dynamical systems the-
ory, particularly those applying to chaos. Several experimen-
tal and computational studies of chaotic flows have been
conducted to investigate the convection of passive tracers in
such flow systems [1–3]. The majority of such studies have
focused on two-dimensional, time periodic flows and have
demonstrated that the evolution of partially mixed structures
in a fluid system can be described based on the stretching and
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stirring of fluid elements placed into the flow [4–6]. The
stretching distributions have also been related to the rate of
intermaterial area generation and the striation thickness dis-
tributions obtained in the flow. A much smaller set of studies
have investigated simple, three-dimensional, spatially peri-
odic flows [7,8] where an analytical approximation to the
velocity field could be obtained. Thus far, however, these
powerful analysis tools have only been applied to idealized
flow systems and have not been used to investigate a realistic,
three-dimensional, industrially practical system.

The complex, three-dimensional geometries and flow
fields typical of most industrial systems make analytic solu-
tions for the velocity field impractical. However, for laminar
flows, a high quality numerical solution of the velocity field
can provide a starting point to characterize mixing perform-
ance. The use of commercially available computational fluid
dynamics (CFD) software packages to solve fluid dynamics
problems has become widespread in a number of disciplines.
Such an approach will be adopted here to obtain a discrete
approximation to the velocity field in an industrial mixing
device, the Kenics mixer manufactured by Chemineer (Day-
ton, OH). Fig. 1 illustrates the standard configuration for this
mixer. Each element of the Kenics mixer is a plate which has
been given a 1808 helical twist. The complete mixer consists
of a series of elements of alternating clockwise and counter-
clockwise twist arranged axially within a tube so that the
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Table 1
Mixer geometry and fluid properties

Mixer
Diameter (D) 5.08
Plate thickness 0.3175 cm
Entrace length 10.16 cm
Exit length 10.16 cm

Fluid
Density (r) 1.20 g/cc
Viscosity (m) 500 cp

Fig. 1. A six-element Kenics static mixer.

leading edge of an element is at right angles to the trailing
edge of the previous element. Laminar flow in the Kenics
mixer is fully three-dimensional and spatially periodic in the
axial direction, with each pair of adjacent elements forming
a single periodic unit. For steady-state operation, the periodic
spatial dimension in this flow is analogous to the periodic
time dimension in previously studied two-dimensional flows.

A previous communication [9] described the three-dimen-
sional velocity field in the Kenics mixer and characterized
different regions of the flow based on profiles of the magni-
tudes of the rate-of-strain tensor, elongation velocity, and
strain velocity. Such Eulerian measures provided a starting
point for identifying the flow regions that potentially contrib-
ute the most to overall mixing performance, but they fail to
capture the dynamics of the mixing process. A more complete
analysis of mixing behavior requires the use of mixing meas-
ures based in the Lagrangian reference frame of the flowing
fluid. In this paper, the evolution of fluid mixing is charac-
terized using tracers that are convected by the flow field,
providing a true Lagrangian characterization of mixing.

The remainder of this paper describes the tracking tech-
niques and the results obtained from such computations. The
fully three-dimensional velocity field for a Kenics mixer
under laminar flow conditions is described in Section 2.1.
Particle tracking software that is used to track the position of
tracer particles as they are convected by the flow is described
in Section 2.2. Tracking simulations involving a large num-
ber of tracer particles (O(104)) are used to describe mixing
in the Kenics mixer in terms of residence time distributions
(Section 3.1), striation development (Section 3.2), and
variation coefficient vs. mixer length (Section 3.3). The
tracking software is also used to compute the stretching of
fluid elements. Mixing performance is then evaluated using
tools that have been developed to analyze mixing in chaotic
flows: stretching distributions, structure of the stretching
field, and manifolds of periodic points (Section 3.4).

2. Algorithms

2.1. Velocity field

A six element Kenics mixer with open tube entrance and
exit sections (Fig. 1) was chosen as a case study. The system

geometry and fluid properties are given in Table 1. The inlet
velocity adopted in the simulation is vxs0.0012 m sy1, giv-
ing an open tube Reynolds number of 0.15.(ResrNv MD/m)x

A flat velocity profile is used as the inlet boundary condition
at the entrance to the mixer geometry. This boundary condi-
tion creates developing flows, which are confined to a region
approximately 3.0 cm in length at the start to the open tube
entrance section. Downstream of this entrance length, a well
developed parabolic flow profile is obtained.

A commercially available computational fluid dynamics
(CFD) software package (FLUENT/UNS) was used to
obtain the velocity field for the static mixer. A full discussion
of the grid generation, grid validation, and solution procedure
using this software has been presented elsewhere [9]. Pre-
vious computational investigations of mixing performance in
the Kenics mixer by other authors have utilized idealized
velocity fields that ignored developing flows at the transitions
between mixer elements in order to obtain an analytical solu-
tion for the de-coupled axial, radial, and rotational flows [10–
13]. However, previous work suggests that the flow areas
neglected in idealized analytic solutions (developing flows
at element transitions) are the areas that provide the greatest
contribution to mixer performance [9]. In contrast to approx-
imate analytic solutions, the use of CFD provides a high
quality numerical solution for the velocity field, including
developing flows, without the need for additional simplifying
assumptions (although such improvements require signifi-
cantly more intensive computations). This numerical solu-
tion then serves as a starting point for further characterization
of the mixer performance through the use of Lagrangian par-
ticle tracking techniques, which are described next.
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2.2. Particle tracking

Computer software was developed to track fluid particles
as they move through the flow field. The movement of the
particles is determined by integrating the vector equation of
motion

dx
sv(x) (1)

dt

for each particle. A fourth order Runge–Kutta integration
scheme with adaptive step-size control [14] was adopted for
integration of the equation of motion owing to its high accu-
racy and straightforward implementation. The three-dimen-
sional discretized velocity field generated by the CFD
calculations is used as input to this tracking program.

The flow solution is obtained by dividing the flow domain
into ten-node tetrahedra. At each node, the position (x, y, z)
and the velocity components (vx, vy, vz) are known. Since the
velocity values are only known at discrete node positions, the
particle tracking software incorporates a scheme to interpo-
late the known velocities from the tetrahedral nodes to obtain
the velocities at an arbitrary point within a given tetrahedron
[9]. The software also provides an efficient means of deter-
mining which tetrahedra the particle visits as it moves through
the flow. During the tracking computations, a small number
of particles (;5%) become trapped in flow regions near
walls of the mixer owing to discretization error. In principle,
this problem could be minimized by increasing the refinement
of the flow solution. Unfortunately, even the present level of
discretization severely strains computational resources, mak-
ing additional grid refinement impractical at the present time.
A different approach is used to solve this problem: whenever
a particle touches a wall, it is displaced a very small distance
(10y5R) perpendicular to the wall.

For the low Reynolds numbers considered here, the veloc-
ity field shows a periodicity matching that of the Kenicsmixer
geometry [9]. The particle tracking software takes advantage
of this periodicity to extend the simulation results for a six-
element mixer to devices of greater length. The six-element
base case is divided into an entrance section (inlet tube and
first two Kenics elements), exit section (outlet tube and Ken-
ics elements 5 and 6), and central periodic section (Kenics
elements 3 and 4). Within the particle tracking software, the
central section is repeated as a spatially periodic unit to extend
the tracking to a mixer of any length. Using this software,
particle tracking computations were performed to simulate
the flow and mixing of fluids within the Kenics mixer. Track-
ing 20 000 particles through a 44 element mixer required 110
Mb of RAM and a total of 288 h of CPU time on a dual
processor Sun hyperSPARC 20/712 workstation. The results
of the particle tracking simulations are described in the next
section.

3. Results

3.1. Residence time distribution (RTD)

The RTD for fluids in a Kenics mixer was calculated by
tracking ;20 000 uniformly spaced particles initially placed
in the open tube region 0.1 cm before the leading edge of the
first Kenics element, covering the entire mixer cross-section
(the initial axial position of the particles is in the well devel-
oped flow region, after the entrance effects due to the inlet
boundary condition have disappeared). Particle trajectories
were tracked through the flow via integration of Eq. (1), and
particle positions and residence times t were recorded each
time a particle crossed a periodic plane within the mixer (i.e.
after the 2nd element, 4th element, 6th element, etc.). This
information allowed the calculation of a residence time dis-
tribution at the specified plane. Given the values of t for all
of the points which have passed the cross-sectional plane, the
fraction of the total flow volume that had residence time
values between t and tqdt was computed as the totalnumber
of particles that had residence time values between t and
tqdt, with each particle weighted by the inlet flow that it
represents. The proper weighting for each particle was com-
puted as the cross-sectional area represented by the particle
multiplied by the inlet axial velocity of the particle, vx,in. The
cumulative residence time distribution F(t) for a given value
of t was estimated as

t

v dAx,in8
ts0F(t)s (2)

Qin

where Qin is the total inlet volumetric flow rate. Finally, the
actual residence time t was normalized by the residence time
of a particle traveling at the average volumetric flow rate to
obtain the normalized residence time u. The residence time
distributions for mixers containing 4, 8, 16 and 32 elements
are shown in Fig. 2(a), along with the RTDs which corre-
spond to Poiseuille flow in an open tube (parabolic velocity
profile) and to plug flow. The RTDs for the Kenics mixer
have a sigmoid shape, which asymptotically approaches the
plug flow RTD as the number of mixer elements is increased.

Experimental residence time distribution data for the Ken-
ics mixer have been presented in the literature by Tung [15],
Pustelnik and Petera [16] and Pustelnik [17] and can be
compared to the simulation results. However, examination of
the experimental technique and analysis used in these previ-
ous studies reveals that the reported results do not represent
the true residence time distribution, but an alternate distri-
bution which is weighted based on the cross-sectional area
of the inlet fluid rather than volumetric flow rate. In order to
facilitate comparison of the simulation results with the liter-
ature data, an area-weighted distribution F(u) was computed
from the particle tracking simulation results for the Kenics
mixer and is shown along with the literature data in Fig. 2(b–
d). Qualitatively, the experimental and simulated RTDs both
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Fig. 2. (a) Residence time distribution vs. the number of mixer elements from the simulation results. The arrows denote the direction that the curves shift with
an increasing number of elements (——— Ns4; —— — Ns8; — — — Ns16; - - - Ns32). (b–d) Simulated area-weighted residence time distributions
vs. experimental data from the literature (——— simulation results; m data from Tung [15]; j data from Pustelnik and Petera [16]; d data from Pustelnik
[17]). Figures correspond to (b) 4 mixer elements, (c) 8 mixer elements, and (d) 16 mixer elements.

exhibit sigmoid shaped curves which approach the plug flow
profile as the number of mixing elements is increased. The
agreement is very good and well within experimental error,
particularly in the region uF1.5. While the agreement is
slightly less satisfying in the tail region of the RTD (u)1.5),
this region is subject to the greatest experimental difficulties
because, for a pulse injection of tracer, resolution of the region
where F9(u))0.9 requires detection of the lowest concen-
trations of tracer.

3.2. Mixing simulation

Mixing of equal portions of two similar fluids was simu-
lated also for ;20 000 particles placed uniformly to cover
the entrance to the mixer (Fig. 3(a)). The particles were
tracked through the flow and their cross-sectional positions
recorded when the particles crossed the planes after the 2nd
Kenics element, 4th element, 6th element, etc. The structures
obtained at each cross-section are shown in Fig. 3(b–f).
These cross-sections represent the structures which would be
present at the corresponding planes for a mixer in steady-
state operation with a continuous feed having the composition

shown in Fig. 3(a). Fig. 3(b–f) shows the reduction in thick-
ness of the striations as mixing takes place. After 10 elements,
individual striations are no longer visible with the resolution
provided by this number of particles.

Several authors [18–20] have reported the correlation
Ss2n for the number of striations, where S is the number of
striations and n is the number of Kenics elements. An exam-
ination of Fig. 3(b) and (c) reveals that this pattern of stri-
ation evolution is confirmed in the simulation results for the
initial mixer segments. Ss22s4 striations are present after
the 2nd Kenics element (Fig. 3(b)), and Ss24s16 stria-
tions can be observed after the 4th element (Fig. 3(c)). How-
ever, as mixing progresses, it quickly becomes impossible to
identify and count individual striations.

The simulation results from Fig. 3 are qualitatively iden-
tical to experimental results that have been reported for mix-
ing of two initially segregated fluids. Cross-sectional slices
from such mixing experiments have been presented in well
known studies by Grace [21] and Middleman [19]. Exact
quantitative comparison between the experimental resultsand
the simulation is difficult, owing to uncertainties in the exact
locations of the slices from the experimental work. However,
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Fig. 3. Cross-sectional profiles for equal volume mixing of two initially segregated components. Cross-section locations: (a) inlet; (b) after 2 elements; (c)
after 4 elements; (d) after 6 elements; (e) after 8 elements; (f) after 10 elements.

a qualitative comparison reveals similar evolution of striation
patterns as the fluid moves down the mixer.

A second type of mixing simulation was performed inorder
to study the behavior of a small amount of tracer injected into
the flow. For this simulation, ;20 000 uniformly spaced
particles were placed in a small circle with a radius equal to
1% of the mixer radius at ys0.5 cm, zs0.5 cm, 0.1 cm
upstream of the leading edge of the first mixer element
(Fig. 4(a)). Again, the particles were tracked through the
flow and their cross-sectional positions were recorded when
the particles crossed the plane after the 2nd Kenics element,
and every spatial period thereafter. The structures obtained
at each cross-section are shown in Fig. 4(b–l). The evolution
of the structures illustrates the mechanisms that contribute to
mixing in the Kenics mixer. The initial circle of points is
stretched into a ribbon, which is elongated, re-oriented, and
folded by the flow within individual elements. The ribbon of
tracer is also cut by the leading edges of sequential mixer
elements. The tracer initially occupies a small fraction of the
total flow, but is redistributed by the mixing action to cover
nearly all of the flow domain after 16 elements.

The results in Fig. 4 are presented for a single tracer injec-
tion location. Variation in the injection point will somewhat
affect the partially mixed structures that are produced in the
first few mixing elements (Fig. 4(a–f)). However, owing to
the chaotic nature of the Kenics flow, the structure obtained
after many flow periods is robust and insensitive to the initial
injection location. The mixed structures present after many
elements (Fig. 4(h–l)) reflect the underlying structure of the
periodic manifolds present in the flow and do not depend on

the tracer introduction point [4] (the manifold structure and
its effect on mixing in the system is covered in greater detail
in Section 3.4).

3.3. Variation coefficient

While the evolution of patterns of striations provides a
useful qualitative understanding of the progress of fluid mix-
ing within the static mixer, a quantitative description of the
mixture quality provides a more practical means of evaluating
mixer performance. Building on the intensity of segregation
concept from Danckwerts [22], mixture quality has often
been quantified in terms of a mixing index which describes
the degree of homogeneity of the system. The mixture homo-
geneity is evaluated based on a statistical analysis of samples
from the mixture, with the mixing index expressed as a func-
tion of the standard deviation (s) or variance (s2) of the
mixture samples. The mixture variance is defined as

n
2#(C yC)i8

is12s s (3)
ny1

where Ci is the concentration of the ith sample, C̄ is the mean
value of concentration, and n is the number of samples.

Experimental data for mixture quality in the Kenics static
mixer has been reported in terms of the variation coefficient
s/C̄ [23,24], also known as the relative standard deviation
(RSD). In order to facilitate a comparison with the available
experimental data, the variation coefficient was computed for
the cross-sectional profiles generated from mixing simula-
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Fig. 4. Cross-sectional profiles for tracer mixing. The initial tracer is injected at the point ys0.5R, zs0.5R. Cross-section locations: (a) inlet; (b) after 2
elements; (c) after 4 elements; (d) after 6 elements; (e) after 8 elements; (f) after 10 elements; (g) after 12 elements; (h) after 14 elements; (i) after 16
elements; (j) after 18 elements; (k) after 20 elements; (l) after 22 elements.

tions. The data of Allocca [23] and Pahl and Muschelknautz
[24] were obtained for C̄s0.10 (i.e. a 10% injection of
tracer), with tracer apparently injected at the center of the
mixer tube. In order to provide a comparison with theseexper-
imental data, a 10% tracer mixing simulation was conducted

as follows: 20 000 uniformly spaced particles were placed in
a circle centered at (ys0, zs0), 0.1 cm upstream of the
leading edge of the first Kenics element, with the circle of
particles covering an area representing 10% of the volumetric
flow on that cross-section. The particles were tracked through
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Fig. 5. Variation coefficient vs. normalized mixer length L/D. (a) Simula-
tion results. The number-based variation coefficient s/N is computed instead
of the concentration based variation coefficient s/C. (b) Normalized sim-
ulation results vs. experimental data from the literature (——d—— simu-
lation results; — e — data from Allocca [23]; — h — data from Pahl and
Muschelknautz [24]).

the flow and their positions recorded where the particles cross
the plane after the 2nd Kenics element, and every spatial
period thereafter.

The variation coefficient on a given mixer cross-section is
calculated as follows. A square grid of 64=64 cells is laid
out to cover the mixer cross-section. Cells that fall entirely
within the flow domain are retained as ‘live’ cells for calcu-
lation purposes, while cells which fall partially or completely
outside of the flow domain are considered ‘dead’. A total of
ns2600 live cells are obtained. Subsequently, the number
of particles in each live cell (Ni) and the total number of
particles which fall within the live cells (Ntot) are computed
based on the position of each particle on the mixer cross-
section. The average number of particles per cell is then
computed as N̄sNtot/n. The variance s is then computed2

N

via Eq. (3) with Ni in place of Ci and N̄ in place of C̄ to obtain
the number-based variation coefficient .2 #xs /NN

The results for the number-based variation coefficient vs.
normalized mixer length (L/D) are shown in Fig. 5(a). The
calculated variation coefficient decreasesmonotonicallyfrom
the inlet of the mixer up to L/Ds15 (10 mixer elements).
After this point, the variation coefficient levels out, indicating

that the characteristic length for the mixture has fallen below
the scale of the grid size used for calculation, and further
homogenization of the mixture cannot be determined at this
level of resolution. The scale for the grid is limited by several
factors. The variation coefficient is calculated based on a
finite number of discrete tracked points, and a minimum num-
ber of points per cell must be maintained to minimize statis-
tical uncertainty. Hence, the number of grid cells cannot be
increased indefinitely. For the case described with
Ntots20 000 and ns2600, N̄s7–8 points/cell. Based on a
striation evolution that follows Ss2n, the striation thickness
correspondingly decreases proportional to 2yn, and eachperi-
odic unit (two mixer elements) results in an approximate
four-fold reduction in the mixture length scale. Therefore, in
order to resolve the variation coefficient for one additional
period, a sixteen-fold increase in the number of grid cells
would be required, with a corresponding sixteen-foldincrease
in the number of tracked particles in order to maintain an
equivalent value for N̄. Such an increase in the number of
particles would require an extremely long computation time
(on the order of 1000 h CPU time on a Sun SPARC 20/712)
only to increase the number of elements from 10 to 12. This
marginal increase does not justify the increase in computa-
tional time. Therefore, the variation coefficient data for the
first 10 mixer elements are used for further calculations.

As shown in Fig. 5(a), the exponential reduction in vari-
ation coefficient over the first 10 mixer elements can be cor-
related by an equation of the form

s L
sA exp yB (4)ž /#N D

which is frequently used to describe data of this type [25].
The coefficients As7.55 and Bs0.139 are regressed from
the simulation results. The coefficient B represents the rate
of decrease in the variation coefficient per unit mixer length,
while the coefficient A is the variation coefficient of the
unmixed inlet stream. For a completely segregated inlet
stream with C̄s0.1, the concentration-based variation coef-
ficient is

s 10s y1 s3.0 (5)yž /# #C C

To provide a direct comparison with concentration-based
experimental data, the number-based variation coefficient
(Eq. (4)) was rescaled by s0.40, resulting in a#(s /C)/A0

vertical shift of the data while maintaining the slope
unchanged.

Fig. 5(b) shows the rescaled simulation results for the first
10 mixer elements plotted along with the experimental data
reported by Allocca [23] and by Pahl and Muschelknautz
[24]. For the two sets of experimental data, the data of
Allocca [23] are consistently larger, suggesting that the
effective sample size was smaller than that used by Pahl and
Muschelknautz [24]. Despite the differences, both sets of
data have similar slopes. Both studies also produce similar
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Fig. 6. Mean (Lnslog10NlgM) and variance (s ) of the logarithm of stretch-2
n

ing vs. the number of mixer elements (——— Ln; —— —— s ).2
n

predictions for the value of L/D required to achieve
s0.05, which is often (arbitrarily) used as criterion for#s/C

a well mixed system. In particular, the two sets of data for
the Kenics mixer are consistent with one another when
viewed in comparison to the other types of mixers which
were also examined in the original papers [25]. The current
simulation results match the results from the previous studies
within the experimental deviations.

The agreement between simulation results and experimen-
tal data for residence time distributions, striation develop-
ment, and variation coefficient confirm that the simulation
provides a reasonably accurate description of the Kenics
mixer. These measures of mixing performance provide an
average description of mixer behavior but do not allow a
detailed description of the mixing process within the flow.
Computation of the stretching field in mixing flows can be
used to provide a more complete description of the dynamics
or spatial structure of the mixing process in specific regions
of the flow. The application of this Lagrangian technique to
the Kenics mixer is described next.

3.4. Stretching histories

Several recent studies have shown that the evolution of
partially mixed structures in a flow system can be determined
by computing the deformation (stretching) and trajectories
of a set of material elements placed within the flow [4–6,26–
28]. The amount of intermaterial surface generated in a
region of the flow is directly proportional to the amount of
stretching experienced by material elements in that region.
The rate of stretching determines the rate of the micromixing
process both by increasing the intermaterial area over which
inter-diffusion of components can occur, and also by decreas-
ing the required diffusional distance. The positions of points
experiencing high and low stretching correspond to regions
of good and poor micromixing, respectively, and the distri-
bution of stretching magnitudes provides a means for char-
acterizing the distribution of mixing intensities within the
flow (for a more detailed discussion, see Liu et al. [29]).

Previous studies have investigated the evolution of stretch-
ing histories for points in two-dimensional, time-periodic
flow systems which exhibit chaotic behavior [3,4,29,30].
The current investigation applies techniques drawn from
these previous studies in order to characterize stretching in
the Kenics mixer. To the best of our knowledge, this study
represents the first application of such techniques to a com-
plex, three-dimensional, industrial mixing system.

Stretching histories for material elements are computed as
follows. In addition to tracking the position of tracer particles
placed into the simulated velocity field, the tracking software
described in Section 2.2 is used to compute the stretching of
a fluid element l associated with each tracer particle. The
evolution of the vector l is tracked by integrating Eq. (1)
(element position) along with:

d(l) Ts(=v) Pl, l sl (6)ts0 0dt

The total accumulated stretching l experienced by the ele-
ment after some time is defined as

NlN
ls (7)

Nl N0

For the stretching calculations, ;20 000 particles were
placed to cover uniformly the entrance to the mixer (the same
initial conditions as shown in Fig. 3(a)). Each particle was
assigned an initial stretch vector l0s[1,0,0]. The particle
position and accumulated stretching were tracked through the
flow via integration of Eqs. (1) and (6). At each periodic
plane, the position and components of the stretch vector l
were recorded. A total of ;456 h CPU time were required
to compute l for 20 000 particles through a 44 element mixer.
The CPU time required for stretch tracking is significantly
greater than that for position tracking alone because twice as
much information is being computed for each point at each
time step (three components of the position vector plus three
components of the stretch vector).

At each periodic plane, the geometric mean of the stretch-
ing values for all N points is computed:

1
N N

Nl Ms l (8)g i2ž /
is1

The logarithm (base 10) of NlgM is plotted in Fig. 6 vs. the
number of mixer elements, where Lnslog10NlgM after the
nth spatial period, or after 2n mixer elements. During the first
two mixer elements, the initial orientations of the stretch
vectors are realigned to correspond to the principal stretching
directions of the flow. After this realignment, the initialvector
orientations are no longer important. The mean stretch grows
at a steady exponential rate vs. the number of mixer elements.
This exponential growth of stretching, which corresponds to
an exponential generation of intermaterial area as fluid flows
through the mixer, is one of the defining features of a chaotic
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Fig. 7. Cross-sectional profiles of the logarithm of stretching, log10l. Cross-sections are located after (a) 4 elements, (b) 12 elements, (c) 20 elements, (d)
28 elements. The magnitude of log10l is represented by the color scale at right.

flow. The exponential stretching rate can be described in
terms of the specific stretching per period a, defined as

1
as lim lnNl M (9)g≥ ¥Nn™`

The specific stretching for a spatially periodic flow is the
direct analog of the Lyapunov exponent in a time periodic
system. For the flow system under investigation, as1.233.
The variance of the logarithm of the stretching, s , is also2

n

plotted in Fig. 6 and increases linearly with the number of
mixer elements. The significance of this variance will be
described later.

The overall structure of the stretching field can also be
examined. A plot of the spatial distribution of stretching at
several mixer cross-sections is shown in Fig. 7. The positions
of the dots correspond to the cross-sectional position where
the tracked tracers cross the plane. The color of the dots
represents the logarithm of the stretching magnitude,
log10(l), where l is calculated via Eq. (9). The color scheme
is shown at the right of the figure: dark blue and light blue
correspond to low stretching, green and yellow to interme-
diate values, and magenta and red to the highest stretching.
A general increase in stretching values with progress through
the mixer is observed, consistent with the exponential growth

in mean stretching shown in Fig. 6. On each cross-section, a
distribution of stretching values is observed, with some
regions exhibiting stretching significantly higher than the
mean (yellow areas in Fig. 7(a)) while other regions exhibit
stretching which is below the mean (green areas in
Fig. 7(d)). Owing to the exponential increase of stretching,
the distribution of l values is best described using the prob-
ability density function of the logarithm of stretching values
Hn(log10l)s(1/N)dN(log10l)/dlog10l, which is com-
puted for each periodic plane by counting the number of
points dN(log10l) that have stretching values between log10l

and log10lqd(log10l). Conceptually, Hn(log10l) can be
interpreted as a spectrum of intensities in the micromixing
process. Fig. 8(a) shows a plot of Hn(log10l) on several
selected mixer cross-sections (periodic planes after 4, 12, 20,
28, 36, and 44 mixer elements). The Hn(log10l) vs. log10l

plots obtained for the Kenics mixer appear qualitatively sim-
ilar to curves which have been reported for chaotic regions
of two-dimensional, time-periodic flows such as the cavity
flow [29,30] and the egg-beater flow [5]. As the number of
mixer elements increases, stretching accumulates and the
curves shift toward higher values of log10l. After the first few
elements, the central portion of the curve begins to approach
a bell-shaped, Gaussian profile which describes the spectrum
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Fig. 8. (a) Probability density function of the logarithm of stretching values,
Hn(log10l), plotted for 4, 12, 20, 28, 36, and 44 elements. The curves shift
from left to right as the number of mixer elements is increased. (b) H(j)
as defined by Eq. (12), plotted for periods ns16, 17, 18, 19, 20, and 21.

of stretching intensities for the bulk of the flow. Such distri-
butions are typical of globally chaotic flows. The curves also
exhibit long tails on the high stretching side, indicating that
a subset of points experiences very high stretching (which is
also evident from the cross-sections in Fig. 7). The absence
of extended tails or a significant ‘bump’ on the low-stretching
side of the curves indicates that there are no large islands of
regular, non-chaotic behavior present in the flow.

Another tool that has been applied to characterize the
stretching distributions in two-dimensional chaotic flows is
the evolution of an asymptotic scaling relation for
Hn(log10l). As discussed by Muzzio et al. [4], the stretching
accumulated by an individual vector i from the beginning of
the first period to the end of the nth period, l0,n(i), can be
expressed as the product of the stretchings ljy1,j(i) accu-
mulated during each period j. The central limit theorem pre-
dicts that when the statistics of the stretching multipliers are
independent of the period, Hn(log10l) should asymptotically
evolve into a Gaussian distribution around its mode,

2(logl yL )0,n n2 y1/2H (logl )s[2ps ] exp y (10)n 0,n n 2≥ ¥(2s )n

where Ln and s are the mean and variance of the variable2
n

logl0,n. The central limit theorem also predicts that for large
enough n, Ln and s will evolve linearly with n as2

n

2 2L fnL and s fns (11)n n

where L and s2 are the mean and variance of the logarithms
of the multipliers for a single period. Fig. 6 illustrates that
linear growth of the mean and variance of logl0,n with the
number of mixer elements is observed for the Kenics mixer,
confirming the predictions of Eq. (11) for this flow system.

Using Eqs. 10 and 11, Liu et al. [30] proposed an asymp-
totic scaling relationship for Hn(log10l0,n) in terms of a func-
tion H(j),

2y(jyL)
H(j)sexp 2≥ ¥(2s )

2 1/2 1/ns{[2ps ] H (logl )} (12)n n 0,n

which is invariant with the number of flow periods, where
the new variable js(1/n)logl0,n was defined as the short-
time Lyapunov exponent. Eq. (12) implies that curves for
Hn(log10l0,n) corresponding to different periods should col-
lapse to an invariant limit when plotted as H(j). Again draw-
ing the analogy with time-periodicity, Eq. (12) was used to
rescale the Hn(log10l) distributions for the Kenics mixer for
different numbers of spatial periods, corresponding to differ-
ent numbers of mixer elements. The results are plotted in
Fig. 8(b) for periods 16 through 21. The scaled curves slowly
collapse to an invariant solution for most values of j (j-0.8)
as the number of periods increases. This represents the major-
ity of particle trajectories in the flow. However, the scaling
fails for higher values of j, corresponding to the tails of
Hn(log10l) that are created by a small number of particles
that are present in high stretching regions in the flow. The
breakdown of the scaling relationship for the tail of the dis-
tribution indicates that the initial assumption that the multi-
pliers become uncorrelated is not valid for these high
stretching regions. Similar results were presented by Liu et
al. [30] for the globally chaotic cavity flow, where an invar-
iant scaling solution was obtained for the bulk of the flow,
but the scaling broke down for high stretching regions created
by manifolds of periodic points and corner singularities.

In order to examine further the regions of highest stretching
in the Kenics mixer flow system, the points with the top 5%
of l values are plotted on six cross-sections in Fig. 9. A stable
structure exists for the high stretching regions, as revealed by
comparing the different cross-sections. In particular, a streak
of high stretching begins near the top right corner of the
vertical mixer element, from where it extends down and to
the right at approximately a 108 angle from the vertical. A
second high stretch streak is symmetrically located, begin-
ning near the bottom left corner of the vertical mixer element
edge. Previous studies of the two-dimensional flow between
eccentric cylinders [3,6] and of the chaotic cavity flow
[29,30] have shown that the short-time spatial structure of
high stretching regions in the flow is determined by the struc-
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Fig. 9. Cross-sectional profiles showing the points that have the top 5% of values for stretching magnitude l. Cross-sections are located after (a) 2 elements
(1 period), (b) 4 elements (2 periods), (c) 6 elements (3 periods), (d) 8 elements (4 periods), (e) 10 elements (5 periods), (f) 12 elements (6 periods).

ture of the unstable manifolds of hyperbolic periodic points.
In order to extend this idea to three-dimensional flows, peri-
odic points and their associated manifolds were located and
characterized for the Kenics mixer flow system.

In a two-dimensional, time-periodic flow, a period n point
is defined as a fluid point that returns to its initial location
after being convected by the flow for n time-periods. Anal-
ogously, for the three-dimensional, spatially periodic flow
investigated here, the two-dimensional cross-sectionalplanes
after each periodic unit in the Kenics mixer are treated in the
same manner as the time-periodic snapshots which are used
to construct a two-dimensional Poincaré section. A period n
point is defined as a fluid point that returns to its initial cross-
sectional position after being convected by the flow for n
spatial periods in the axial direction (i.e. after traveling
through 2n mixer elements). Periodic points are located by
covering the flow cross-section with a large number of tracer
particles, tracking the tracers through the flow, and identify-
ing those which return to their initial cross-sectional position
after a given number of periods. The procedure is refined by
placing higher concentrations of tracer particles in thevicinity
of suspected periodic points until the location of the periodic
point is accurately identified.

Once the periodic points are located, the nature of the
points is determined by calculating the deformation tensor F
as

d(F) Ts(=v) PF, F sI (13)ts0dt

where I is the identity tensor. The deformation tensor is com-
puted along the trajectory followed by the periodic point
using the same tracking software described above for position
and stretch tracking. The nature of the periodic point is deter-
mined by the eigenvalues of F. For elliptic points, some
eigenvalues of F will be complex and the point will be sur-
rounded by an island of regular, non-chaotic flow. For hyper-
bolic points, all eigenvalues of F are real, and the point will
have stable and unstable manifolds which approach and leave
the point (respectively) along the eigendirections of the
deformation tensor.

Two period-1 hyperbolic points were found in the flow in
the Kenics mixer. The points are located symmetrically, at
(ys0.127R, zs0.984R) and (ysy0.127R, zsy0.984R)
in the mixer cross-section at the plane between periodic seg-
ments. The unstable manifolds for these points were deter-
mined by placing 20 000 tracer particles in a small circle
(radius f0.7% of R) around the location of the point at the
periodic plane, and tracking the tracers through the flow for
several periods. The results of this tracking are shown in
Fig. 10, which shows two-dimensional slices of the manifolds
at periodic intervals. For a three-dimensional flow system,
the manifolds are actually three-dimensional structures; two-
dimensional slices of the manifolds are displayed here to
facilitate visualization and analysis. The structure of the man-
ifold develops slowly at first (through 4 flow periods) and
the tracers reach only a small region of the flow domain. With
further progress through the mixer, the tracers spread to cover
more and more of the flow cross-section. The complete man-
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Fig. 10. Cross-sectional profiles showing the manifolds of the two period-1 hyperbolic points that were found in the flow. Cross-sections are located after (a)
2 elements (1 period), (b) 4 elements (2 periods), (c) 6 elements (3 periods), (d) 8 elements (4 periods), (e) 10 elements (5 periods), (f) 12 elements (6
periods).

ifold for the periodic point is an invariant structure (i.e. the
structure of the manifold is the same when examined at peri-
odic intervals) and has infinite length. After a sufficient num-
ber of periods, manifolds that start inside the chaotic region
of the flow will asymptotically approach all points within the
chaotic region. However, for mixing processes in actual prac-
tice, the number of spatial periods is limited and the manifold
effects of interest are those that occur for a small number of
periods. Particles initially close to a periodic point travel
along the unstable manifold and experience high stretching,
but only reach a limited region of the overall flow, resulting
in segregated regions of high stretch.

Comparison of the manifolds from Fig. 10(c) and (d)
with the high stretching regions from Fig. 9 reveals a good
qualitative agreement between the structures. The dominant
feature of the low-period manifold is a streak which emanates
from the period-1 point in quadrant 1 and stretches down and
to the right across the flow cross-section (Fig. 10(a–c)),with
a symmetric streak for the quadrant 3 period-1 point. This
corresponds exactly to the most densely populated high
stretching regions in Fig. 9. For a higher number of periods,
the manifold structure develops branches that fan off from
the initial streak (Fig. 10(d)). This structure is also evident
in the high stretching plots (most notably in Fig. 9(b)),
although more faintly than the dominant streakcorresponding
to the lower-period structure of the manifold.

4. Conclusions

Mixing in a Kenics static mixer was simulated by tracking
the motion of a large number of fluid tracer particles via
integration of the equation of motion for each particle. The
agreement of the simulation results with experimental data
from the literature for residence time distributions, striation
evolution, and mixing index verifies that the simulation tech-
nique accurately represents the physical system. The match
between simulation and existing experimental results indi-
cates that the simulation technique can be used as a tool to
make a preliminary evaluation of mixing performance for a
given mixer geometry.

The stretching histories of fluid tracer particles were also
tracked for tracer elements convected by the flow. This tech-
nique has been used previously to evaluate mixing and
chaotic behavior in two-dimensional, time-periodic flow
systems. The current results extend the use of this technique
for the first time to the direct evaluation of an actual three-
dimensional industrial mixing device. Analysis of fluid fila-
ment stretching indicates that the average stretch grows
exponentially with the number of flow periods, which is a
signature of chaotic flows. Computation of the probability
density function of the logarithm of stretching values,
Hn(log10l), reveals a Gaussian distribution over the central
spectrum of stretching intensities. Particularly, no deviations
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from the Gaussian profile are found at low stretching inten-
sities, suggesting that the flow is globally chaotic. A signifi-
cant tail of high stretching intensities is also found, however,
where the spatial locations of points with the highest stretch-
ing values correspond to the manifolds of two period-1 hyper-
bolic points which are present in the flow. A scaling
formalism for Hn(log10l) based on the central-limit theorem
collapses the stretching distributions to an invariant limit over
the majority of log10l values. However, the scaling fails for
the high stretch tails, indicating that persistent correlations
for the stretching multipliers exist in the high stretch regions.

The results obtained for the Kenics mixer demonstrate that
dynamical systems analysis tools can be applied for the anal-
ysis of mixing in ‘real-world’ industrial systems. Coupled
with the use of CFD to compute velocity fields for complex
geometries, particle tracking and stretch tracking provide a
practical means for quantitative analysis of mixing perform-
ance. Computational tools such as these provide the means
to understand better existing mixing systems, and also the
ability to evaluate mixer configurations computationally
before undertaking costly experimental investigation. For
example, alternate configurations of the Kenics mixer could
be generated by varying the geometry of the mixer elements
(length to diameter ratio, twist angle, etc.). The velocity
fields for these alternate configurations could be obtained
from CFD computations, and dynamical systems tools used
to determine quantitatively the relative mixing performance
for the different geometries. Moreover, these tools allow
quantitative comparison of entirely different mixers. In addi-
tion, the Lagrangian tracking tools that have been developed
could also be applied to other properties of interest for the
flow system, such as heat or mass transfer, the aggregation
and break-up of fluid drops, and chemical reactions.
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Appendix A. Nomenclature

A parameter representing the coefficient of
variation of an unmixed stream (Eq. (4))

B parameter representing the change in
coefficient of variation vs. mixer length
(Eq. (4))

Ci concentration in sample i
C̄ average concentration
D mixer diameter
dA cross-sectional area represented by each

tracer particle
F deformation gradient tensor

F(u) cumulative residence time distribution
F9(u) area-weighted residence time distribution
Hn(log10l) probability density function of the logarithm

of stretching values
H(j) rescaled value for Hn(log10l), defined in

Eq. (12)
I identity tensor
l fluid filament vector tracked for stretching

computations
l0 initial condition for vector l
L axial length of a single mixer element
Ni number of tracer particles in sample i
N̄ average number of particles per cell
n period
Qin total inlet volumetric flow rate
R mixer radius

Re empty tube Reynolds number, Res
rNv MDx

m

x vector of particle position (x, y, z)
v(x) particle velocity as a function of position
vx, vy, vz x-, y-, and z-components of fluid velocity
=v velocity gradient
x vector of particle position (x, y, z)

Greek letters

a specific stretching per period
L mean of the logarithm of multipliers ljyl,j

for a single period
Ln mean of logl0,nslog10NlgM

l stretching experienced by vector l
l0,n(i) stretching for particle i during the period

from 0 to n
NlgM geometric average of stretching over all

vectors on a given cross-section
m fluid viscosity
r fluid density
u normalized residence time
s2 variance
s standard deviation
t residence time of a single tracer particle
j short-time Lyapunov exponent,

js(1/n)logl0,n
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