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The Kenics static mixer: athree-dimensional chaotic flow
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Abstract

The Kenics static mixer was investigated numerically using Lagrangian methods to characterize mixer performance for low Reynolds
number flows. Particle tracking simulations were used to compute residence time distributions, striation evolution, and variation coefficient
as a function of the number of mixer elements. The mixing measures calculated from the numerical simulation agree closely with reported
experimental results from the literature. Stretching of material elements in the mixer flow was also computed. The average stretching of
material elementsincreased exponentially with the number of periodic mixer segments (asignature of chaotic flows). The probability density
function of thelogarithm of stretching values, H,,(10g,0A) , had a Gaussian distribution over the central spectrum of stretching intensities, with
no deviations from the Gaussian profile at low stretching intensities, suggesting a globally chaotic flow. A significant tail of high stretching
intensities was found. The spatial locations of points with the highest stretching values corresponded to the manifolds of two period-1
hyperbolic points present in the flow. © 1997 Published by Elsevier Science SA.
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1. Introduction

Mixing is ubiquitous and essential in many facets of the
chemical processindustries, ranging from simple blending to
complex chemical reactions for which the reaction yield and
selectivity are highly dependent on the mixing performance.
Improper mixing can result in non-reproducible processing
and lowered product quality, with the associated need for
more elaborate downstream purification processes and
increased waste disposal costs. However, despite its impor-
tance, mixing performanceisrarely characterized rigorously
for industrial systems. Detailed characterizations are impor-
tant, particularly in slow moving, high viscosity, laminar
flows, which have a significant potential to lead to inhomo-
geneity and poorly mixed regions within the flow system.

Significant advances have been made in the study of fluid
mechanical mixing using tools from dynamical systemsthe-
ory, particularly those applying to chaos. Several experimen-
tal and computational studies of chaotic flows have been
conducted to investigate the convection of passive tracersin
such flow systems [ 1-3]. The majority of such studies have
focused on two-dimensional, time periodic flows and have
demonstrated that the evolution of partially mixed structures
inafluid system can be described based on the stretching and
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gtirring of fluid elements placed into the flow [4-6]. The
stretching distributions have also been related to the rate of
intermaterial area generation and the striation thickness dis-
tributions obtained in the flow. A much smaller set of studies
have investigated simple, three-dimensional, spatialy peri-
odic flows [7,8] where an analytical approximation to the
velocity field could be obtained. Thus far, however, these
powerful analysis tools have only been applied to idealized
flow systemsand have not been used toinvestigate aredlistic,
three-dimensional, industrially practical system.

The complex, three-dimensiona geometries and flow
fields typical of most industrial systems make analytic solu-
tionsfor the velocity field impractical. However, for laminar
flows, a high quality numerical solution of the velocity field
can provide a starting point to characterize mixing perform-
ance. The use of commercially available computational fluid
dynamics (CFD) software packagesto solvefluid dynamics
problems has become widespread in anumber of disciplines.
Such an approach will be adopted here to obtain a discrete
approximation to the velocity field in an industrial mixing
device, the Kenics mixer manufactured by Chemineer (Day-
ton, OH). Fig. lillustratesthe standard configuration for this
mixer. Each element of the Kenics mixer isaplate which has
been given a 180° helical twist. The complete mixer consists
of aseries of elements of aternating clockwise and counter-
clockwise twist arranged axially within a tube so that the
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leading edge of an element is at right angles to the trailing
edge of the previous element. Laminar flow in the Kenics
mixer isfully three-dimensional and spatially periodicinthe
axial direction, with each pair of adjacent elements forming
asingle periodic unit. For steady-state operation, theperiodic
spatial dimension in this flow is analogous to the periodic
timedimensionin previously studied two-dimensional flows.

A previouscommunication [ 9] described thethree-dimen-
sional velocity field in the Kenics mixer and characterized
different regions of the flow based on profiles of the magni-
tudes of the rate-of-strain tensor, elongation velocity, and
strain velocity. Such Eulerian measures provided a starting
point for identifying the flow regionsthat potentially contrib-
ute the most to overall mixing performance, but they fail to
capturethedynamicsof themixing process. A morecompl ete
analysis of mixing behavior requiresthe use of mixing meas-
ures based in the Lagrangian reference frame of the flowing
fluid. In this paper, the evolution of fluid mixing is charac-
terized using tracers that are convected by the flow field,
providing atrue Lagrangian characterization of mixing.

The remainder of this paper describes the tracking tech-
niques and the results obtained from such computations. The
fully three-dimensional velocity field for a Kenics mixer
under laminar flow conditions is described in Section 2.1.
Particle tracking software that is used to track the position of
tracer particles asthey are convected by the flow isdescribed
in Section 2.2. Tracking simulationsinvolving alarge num-
ber of tracer particles (O(10%)) are used to describe mixing
in the Kenics mixer in terms of residence time distributions
(Section 3.1), striation development (Section 3.2), and
variation coefficient vs. mixer length (Section 3.3). The
tracking software is aso used to compute the stretching of
fluid elements. Mixing performance is then evaluated using
tools that have been developed to analyze mixing in chaotic
flows: stretching distributions, structure of the stretching
field, and manifolds of periodic points (Section 3.4).

2. Algorithms
2.1. Veocity field

A six element Kenics mixer with open tube entrance and
exit sections (Fig. 1) was chosen asacase study. The system

Tablel
Mixer geometry and fluid properties

Mixer

Diameter (D) 5.08

Plate thickness 0.3175cm
Entrace length 10.16 cm
Exit length 10.16 cm
Fluid

Density (p) 1.20g/cc
Viscosity (u) 500 cp

geometry and fluid properties are given in Table 1. Theinlet
velocity adopted in the simulation isv, =0.0012 m s~ 2, giv-
ing an open tube Reynoldsnumber (Re= p{v, YD/ ) of 0.15.
A flat velocity profileis used astheinlet boundary condition
at the entrance to the mixer geometry. This boundary condi-
tion creates devel oping flows, which are confined to aregion
approximately 3.0 cm in length at the start to the open tube
entrance section. Downstream of this entrance length, awell
developed parabolic flow profile is obtained.

A commercialy available computational fluid dynamics
(CFD) software package (FLUENT/UNS) was used to
obtain the velacity field for the static mixer. A full discussion
of thegrid generation, grid validation, and sol ution procedure
using this software has been presented elsewhere [9]. Pre-
vious computational investigations of mixing performancein
the Kenics mixer by other authors have utilized idealized
velocity fieldsthat ignored devel oping flows at thetransitions
between mixer elementsin order to obtain an analytical solu-
tionfor the de-coupled axial, radial, and rotational flows [ 10—
13]. However, previous work suggests that the flow areas
neglected in idealized analytic solutions (developing flows
at element transitions) are the areas that provide the greatest
contribution to mixer performance [ 9] . In contrast to approx-
imate analytic solutions, the use of CFD provides a high
quality numerical solution for the velocity field, including
developing flows, without the need for additional simplifying
assumptions (athough such improvements require signifi-
cantly more intensive computations). This numerical solu-
tion then servesasastarting point for further characterization
of the mixer performance through the use of Lagrangian par-
ticle tracking techniques, which are described next.

Fig. 1. A six-element Kenics static mixer.



D.M. Hobbs, F.J. Muzzio / Chemical Engineering Journal 67 (1997) 153-166 155

2.2. Particletracking

Computer software was developed to track fluid particles
as they move through the flow field. The movement of the
particles is determined by integrating the vector equation of
motion

— =V(X) (1)

for each particle. A fourth order Runge—Kutta integration
scheme with adaptive step-size control [ 14] was adopted for
integration of the equation of motion owing to its high accu-
racy and straightforward implementation. The three-dimen-
sional discretized velocity field generated by the CFD
calculationsis used as input to this tracking program.

The flow solution is obtained by dividing the flow domain
into ten-node tetrahedra. At each node, the position (x, y, z)
and the velocity components (v,, v,, v,) areknown. Sincethe
velocity valuesare only known at discrete node positions, the
particle tracking software incorporates a scheme to interpo-
|ate the known vel ocitiesfrom the tetrahedral nodesto obtain
the velacities at an arbitrary point within agiven tetrahedron
[9]. The software a so provides an efficient means of deter-
mining whichtetrahedratheparticlevisitsasit movesthrough
the flow. During the tracking computations, a small humber
of particles ( ~5%) become trapped in flow regions near
walls of the mixer owing to discretization error. In principle,
thisproblem could be minimized by increasing therefinement
of the flow solution. Unfortunately, even the present level of
discretization severely strains computational resources, mak-
ing additional grid refinement impractical at the present time.
A different approach is used to solvethis problem: whenever
aparticletouchesawall, it is displaced avery small distance
(107 °R) perpendicular to the wall.

For thelow Reynolds numbers considered here, the vel oc-
ity field showsaperiodicity matching that of theK enicsmixer
geometry [9]. Theparticletracking softwaretakesadvantage
of this periodicity to extend the simulation results for a six-
element mixer to devices of greater length. The six-element
base case is divided into an entrance section (inlet tube and
first two Kenicselements), exit section (outlet tubeand Ken-
ics elements 5 and 6), and central periodic section (Kenics
elements 3 and 4). Within the particle tracking software, the
central sectionisrepeated asaspatially periodic unittoextend
the tracking to a mixer of any length. Using this software,
particle tracking computations were performed to simulate
the flow and mixing of fluidswithin the Kenicsmixer. Track-
ing 20 000 particlesthrough a44 element mixer required 110
Mb of RAM and a total of 288 h of CPU time on a dua
processor Sun hyperSPARC 20/ 712 workstation. Theresults
of the particle tracking simulations are described in the next
section.

3. Results
3.1. Residencetimedistribution (RTD)

The RTD for fluids in a Kenics mixer was calculated by
tracking ~ 20 000 uniformly spaced particlesinitially placed
in the open tube region 0.1 cm before the leading edge of the
first Kenics element, covering the entire mixer cross-section
(theinitial axial position of the particlesisin the well devel-
oped flow region, after the entrance effects due to the inlet
boundary condition have disappeared). Particle trajectories
were tracked through the flow viaintegration of Eq. (1), and
particle positions and residence times r were recorded each
time a particle crossed a periodic plane within the mixer (i.e.
after the 2nd element, 4th element, 6th element, etc.). This
information allowed the calculation of aresidence time dis-
tribution at the specified plane. Given the values of 7 for al
of the pointswhich have passed the cross-sectional plane, the
fraction of the total flow volume that had residence time
valuesbetween rand 7+ drwascomputed asthetotal number
of particles that had residence time values between 7 and
7+ dT, with each particle weighted by the inlet flow that it
represents. The proper weighting for each particle was com-
puted as the cross-sectional area represented by the particle
multiplied by theinlet axial velocity of the particle, v, ;.. The
cumulativeresidencetimedistribution F( 7) for agivenvalue
of was estimated as

Z Ux,indA
t=0

F() o (2)
where Q;,, isthe total inlet volumetric flow rate. Finaly, the
actua residence time was normalized by the residencetime
of aparticle traveling at the average volumetric flow rate to
obtain the normalized residence time 6. The residence time
distributions for mixers containing 4, 8, 16 and 32 elements
are shown in Fig. 2(a), aong with the RTDs which corre-
spond to Poiseuille flow in an open tube (parabolic velocity
profile) and to plug flow. The RTDs for the Kenics mixer
have a sigmoid shape, which asymptotically approaches the
plug flow RTD asthe number of mixer elementsisincreased.

Experimental residence time distribution datafor the Ken-
icsmixer have been presented in theliterature by Tung [ 15],
Pustelnik and Petera [16] and Pustelnik [17] and can be
compared to the simulation results. However, examination of
the experimental technique and analysis used in these previ-
ous studies reveals that the reported results do not represent
the true residence time distribution, but an aternate distri-
bution which is weighted based on the cross-sectional area
of theinlet fluid rather than volumetric flow rate. In order to
facilitate comparison of the simulation results with the liter-
ature data, an area-wei ghted distribution £ ( #) wascomputed
from the particle tracking simulation results for the Kenics
mixer and isshown along with theliterature datain Fig. 2(b—
d). Qualitatively, the experimental and simulated RTDsboth
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Fig. 2. (a) Residence time distribution vs. the number of mixer elements from the simulation results. The arrows denote the direction that the curves shift with

an increasing number of elements (
vs. experimental data from the literature (

N=4,—— — N=8 — ——N=16; - - - N=32). (b—d) Simulated area-weighted residence time distributions
simulation results; A datafrom Tung [15]; B data from Pustelnik and Petera [ 16]; @ data from Pustelnik

[17]). Figures correspond to (b) 4 mixer elements, (¢) 8 mixer elements, and (d) 16 mixer elements.

exhibit sigmoid shaped curves which approach the plug flow
profile as the number of mixing elements is increased. The
agreement is very good and well within experimental error,
particularly in the region #<1.5. While the agreement is
slightly lesssatisfyinginthetail region of theRTD (6> 1.5),
thisregion is subject to the greatest experimental difficulties
because, for apul seinjection of tracer, resolution of theregion
where F’ () > 0.9 requires detection of the lowest concen-
trations of tracer.

3.2. Mixing simulation

Mixing of equal portions of two similar fluids was simu-
lated also for ~20 000 particles placed uniformly to cover
the entrance to the mixer (Fig. 3(a)). The particles were
tracked through the flow and their cross-sectional positions
recorded when the particles crossed the planes after the 2nd
Kenics element, 4th element, 6th element, etc. The structures
obtained at each cross-section are shown in Fig. 3(b-f).
These cross-sections represent the structureswhich would be
present at the corresponding planes for a mixer in steady-
state operation with acontinuousfeed having thecomposition

showninFig. 3(a). Fig. 3(b—f) showsthereductioninthick-
nessof the striationsasmixing takesplace. After 10 elements,
individual striations are no longer visible with the resolution
provided by this number of particles.

Several authors [18-20] have reported the correlation
S =2" for the number of striations, where S is the number of
striations and n is the number of Kenics elements. An exam-
ination of Fig. 3(b) and (c) reveasthat this pattern of stri-
ation evolution is confirmed in the simulation results for the
initial mixer segments. S=22=4 dtriations are present after
the 2nd Kenics element (Fig. 3(b)), and S=2*=16 stria-
tionscan be observed after the4th element (Fig. 3(c) ). How-
ever, as mixing progresses, it quickly becomesimpossibleto
identify and count individual striations.

The simulation results from Fig. 3 are qualitatively iden-
tical to experimental results that have been reported for mix-
ing of two initially segregated fluids. Cross-sectional slices
from such mixing experiments have been presented in well
known studies by Grace [21] and Middleman [19]. Exact
guantitative comparison between theexperimental resultsand
the simulation is difficult, owing to uncertaintiesin the exact
locations of the dlicesfrom the experimenta work. However,
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aqualitative comparison reveal ssimilar evol ution of striation
patterns as the fluid moves down the mixer.

A second typeof mixing simulation wasperformedinorder
to study the behavior of asmall amount of tracer injectedinto
the flow. For this simulation, ~20 000 uniformly spaced
particles were placed in asmall circle with aradius equal to
1% of the mixer radius at y=0.5 cm, z=0.5cm, 0.1 cm
upstream of the leading edge of the first mixer element
(Fig. 4(a)). Again, the particles were tracked through the
flow and their cross-sectional positions were recorded when
the particles crossed the plane after the 2nd Kenics element,
and every spatial period thereafter. The structures obtained
at each cross-section areshownin Fig. 4(b-). Theevolution
of the structuresillustrates the mechanismsthat contributeto
mixing in the Kenics mixer. The initial circle of points is
stretched into a ribbon, which is elongated, re-oriented, and
folded by the flow within individual elements. The ribbon of
tracer is aso cut by the leading edges of sequential mixer
elements. The tracer initially occupiesasmall fraction of the
total flow, but is redistributed by the mixing action to cover
nearly al of the flow domain after 16 elements.

Theresultsin Fig. 4 are presented for asingle tracer injec-
tion location. Variation in the injection point will somewhat
affect the partially mixed structures that are produced in the
first few mixing elements (Fig. 4(a-f)). However, owingto
the chaotic nature of the Kenics flow, the structure obtained
after many flow periodsisrobust and insensitiveto theinitial
injection location. The mixed structures present after many
elements (Fig. 4(hH)) reflect the underlying structure of the
periodic manifolds present in the flow and do not depend on

!

| R

Fig. 3. Cross-sectional profiles for equal volume mixing of two initially segregated components. Cross-section locations: (a) inlet; (b) after 2 elements; (¢)
after 4 elements; (d) after 6 elements; (e) after 8 elements; (f) after 10 elements.

the tracer introduction point [4] (the manifold structure and
its effect on mixing in the system is covered in greater detail
in Section 3.4).

3.3. Variation coefficient

While the evolution of patterns of striations provides a
useful qualitative understanding of the progress of fluid mix-
ing within the static mixer, a quantitative description of the
mixture quality providesamorepractical meansof evaluating
mixer performance. Building on the intensity of segregation
concept from Danckwerts [22], mixture quality has often
been quantified in terms of a mixing index which describes
the degree of homogeneity of the system. The mixture homo-
geneity is evaluated based on a statistical analysisof samples
from the mixture, with the mixing index expressed asafunc-
tion of the standard deviation (o) or variance (¢?) of the
mixture samples. The mixture varianceis defined as

Y (C—C)?

2 i=1
0' =

P (3
where C; isthe concentration of the i sample, C isthe mean
value of concentration, and » isthe number of samples.
Experimental data for mixture quality in the Kenics static
mixer has been reported in terms of the variation coefficient
o/C [23,24], dso known as the relative standard deviation
(RSD). In order to facilitate a comparison with the available
experimental data, the variation coefficient wascomputed for
the cross-sectiona profiles generated from mixing simula-



158 D.M. Hobbs, F.J. Muzzio / Chemical Engineering Journal 67 (1997) 153-166

(@) (b) (©)

s 2
Fig. 4. Cross-sectional profiles for tracer mixing. The initial tracer is injected at the point y=0.5R, z=0.5R. Cross-section locations: (a) inlet; (b) after 2
elements; (c) after 4 elements; (d) after 6 elements; (e) after 8 elements; (f) after 10 elements; (g) after 12 elements; (h) after 14 elements; (i) after 16
elements; (j) after 18 elements; (k) after 20 elements; (1) after 22 elements.

tions. The data of Allocca [ 23] and Pahl and Muschelknautz asfollows: 20 000 uniformly spaced particleswere placed in
[24] were obtained for C=0.10 (i.e. a 10% injection of a circle centered a (y=0, z=0), 0.1 cm upstream of the
tracer), with tracer apparently injected at the center of the leading edge of the first Kenics element, with the circle of
mixer tube. In order to provideacomparison withtheseexper- particles covering an arearepresenting 10% of thevolumetric
imental data, a 10% tracer mixing simulation was conducted flow onthat cross-section. The particlesweretracked through
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Fig. 5. Variation coefficient vs. normalized mixer length L/D. (a) Simula-
tionresults. Thenumber-based variation coefficient o/ Niscomputedinstead
of the concentration based variation coefficient o/ C. (b) Normalized sim-
ulation results vs. experimental data from the literature (——@—— simu-
lation results; — <& — datafrom Allocca [ 23] ; — [ — datafrom Pahl and
Muschelknautz [24]).

theflow and their positionsrecorded wherethe particlescross
the plane after the 2nd Kenics element, and every spatial
period thereafter.

The variation coefficient on agiven mixer cross-sectionis
calculated as follows. A square grid of 64 <64 cellsis laid
out to cover the mixer cross-section. Cells that fall entirely
within the flow domain are retained as ‘live' cellsfor calcu-
|ation purposes, while cellswhich fall partially or completely
outside of the flow domain are considered ‘dead’. A total of
n= 2600 live cells are obtained. Subsequently, the number
of particles in each live cell (N;) and the total number of
particles which fall within the live cells (N,y) are computed
based on the position of each particle on the mixer cross-
section. The average number of particles per cell is then
computed as N=N,,/n. The variance ¢2 is then computed
viaEq. (3) withN;inplaceof C;and N in place of C to obtain
the number-based variation coefficient o3 /N.

The results for the number-based variation coefficient vs.
normalized mixer length (L/D) areshowninFig. 5(a). The
cal culated variation coefficient decreasesmonotonically from
the inlet of the mixer up to L/D =15 (10 mixer elements).
After thispoint, thevariation coefficient level sout, indicating

that the characteristic length for the mixture hasfallen below
the scale of the grid size used for calculation, and further
homogenization of the mixture cannot be determined at this
level of resolution. The scalefor the grid islimited by several
factors. The variation coefficient is calculated based on a
finitenumber of discretetracked points, and aminimumnum-
ber of points per cell must be maintained to minimize statis-
tical uncertainty. Hence, the number of grid cells cannot be
increased indefinitely. For the case described with
Nt =20 000 and n = 2600, N = 7-8 points/cell. Based on a
striation evolution that follows S = 2", the striation thickness
correspondingly decreasesproportional to2~", and each peri-
odic unit (two mixer elements) results in an approximate
four-fold reduction in the mixture length scale. Therefore, in
order to resolve the variation coefficient for one additional
period, a sixteen-fold increase in the number of grid cells
would berequired, with acorresponding sixteen-foldincrease
in the number of tracked particles in order to maintain an
equivalent value for N. Such an increase in the number of
particles would require an extremely long computation time
(ontheorder of 1000 h CPU timeon aSun SPARC 20/712)
only to increase the number of elements from 10 to 12. This
marginal increase does not justify the increase in computa-
tional time. Therefore, the variation coefficient data for the
first 10 mixer elements are used for further calculations.

Asshown in Fig. 5(a), the exponential reduction in vari-
ation coefficient over the first 10 mixer elements can be cor-
related by an equation of the form

4 p(_Bé) A
N4 D 4)

which is frequently used to describe data of this type [25].
The coefficients A =7.55 and B=0.139 are regressed from
the simulation results. The coefficient B represents the rate
of decreasein the variation coefficient per unit mixer length,
while the coefficient A is the variation coefficient of the
unmixed inlet stream. For a completely segregated inlet
stream with C=0.1, the concentration-based variation coef-
ficientis

gy l_ _
= (C_‘ 1) 3.0 (5)

To provide a direct comparison with concentration-based
experimental data, the number-based variation coefficient
(Eq. (4)) wasrescaled by (o,/C)/A=0.40, resulting in a
vertical shift of the data while maintaining the slope
unchanged.

Fig. 5(b) showstherescaled simulation resultsfor thefirst
10 mixer elements plotted aong with the experimental data
reported by Allocca [23] and by Pahl and Muschelknautz
[24]. For the two sets of experimental data, the data of
Allocca [23] are consistently larger, suggesting that the
effective sample size was smaller than that used by Pahl and
Muschelknautz [24]. Despite the differences, both sets of
data have similar slopes. Both studies also produce similar

1S
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predictions for the value of L/D required to achieve
o/C=0.05, whichisoften (arbitrarily) used as criterion for
awell mixed system. In particular, the two sets of data for
the Kenics mixer are consistent with one another when
viewed in comparison to the other types of mixers which
were also examined in the original papers [25]. The current
simulation results match the resultsfrom the previous studies
within the experimental deviations.

The agreement between simulation results and experimen-
tal data for residence time distributions, striation develop-
ment, and variation coefficient confirm that the simulation
provides a reasonably accurate description of the Kenics
mixer. These measures of mixing performance provide an
average description of mixer behavior but do not alow a
detailed description of the mixing process within the flow.
Computation of the stretching field in mixing flows can be
used to provide amore compl ete description of thedynamics
or spatial structure of the mixing processin specific regions
of the flow. The application of this Lagrangian technique to
the Kenics mixer is described next.

3.4. Stretching histories

Several recent studies have shown that the evolution of
partially mixed structuresin aflow system can be determined
by computing the deformation (stretching) and trajectories
of aset of material elements placed withintheflow [ 4-6,26—
28]. The amount of intermaterial surface generated in a
region of the flow is directly proportional to the amount of
stretching experienced by material elements in that region.
Therate of stretching determinesthe rate of the micromixing
process both by increasing the intermaterial area over which
inter-diffusion of components can occur, and also by decreas-
ing the required diffusional distance. The positions of points
experiencing high and low stretching correspond to regions
of good and poor micromixing, respectively, and the distri-
bution of stretching magnitudes provides a means for char-
acterizing the distribution of mixing intensities within the
flow (for amore detailed discussion, see Liu et a. [29]).

Previous studieshaveinvestigated the evol ution of stretch-
ing histories for points in two-dimensional, time-periodic
flow systems which exhibit chaotic behavior [3,4,29,30].
The current investigation applies techniques drawn from
these previous studies in order to characterize stretching in
the Kenics mixer. To the best of our knowledge, this study
represents the first application of such techniques to a com-
plex, three-dimensional, industrial mixing system.

Stretching historiesfor material elements are computed as
follows. In addition to tracking the position of tracer particles
placed into the simul ated vel ocity field, the tracking software
described in Section 2.2 isused to compute the stretching of
a fluid element | associated with each tracer particle. The
evolution of the vector | is tracked by integrating Eq. (1)
(element position) along with:

d(h

FZ(VV)T'L l—o=lo (6)
The total accumulated stretching A experienced by the ele-
ment after sometimeis defined as

A=— (7

For the stretching calculations, ~ 20 000 particles were
placed to cover uniformly the entranceto themixer (thesame
initial conditions as shown in Fig. 3(a)). Each particle was
assigned an initial stretch vector |,=[1,0,0]. The particle
position and accumul ated stretching weretracked throughthe
flow via integration of Egs. (1) and (6). At each periodic
plane, the position and components of the stretch vector |
were recorded. A total of ~456 h CPU time were required
to compute A for 20 000 particlesthrough a44 element mixer.
The CPU time required for stretch tracking is significantly
greater than that for position tracking alone because twice as
much information is being computed for each point at each
time step (three components of the position vector plusthree
components of the stretch vector).

At each periodic plane, the geometric mean of the stretch-
ing valuesfor al N pointsis computed:

1

ow=(11) (8

The logarithm (base 10) of (Ay) is plotted in Fig. 6 vs. the
number of mixer elements, where A, =10g,0{A,) &fter the
nth spatial period, or after 2n mixer elements. During thefirst
two mixer elements, the initial orientations of the stretch
vectorsarerealigned to correspond to the principal stretching
directionsof theflow. After thisrealignment, theinitial vector
orientations are no longer important. The mean stretch grows
at asteady exponential ratevs. the number of mixer elements.
This exponentia growth of stretching, which correspondsto
an exponential generation of intermaterial areaasfluid flows
through the mixer, isone of the defining features of achaotic

14 T —T

12 ¢ b

0 10 20 30 40
Number of Mixer Elements
Fig. 6. Mean (A, =10g,0(),)) and variance (o) of thelogarithm of stretch-
ing vs. the number of mixer elements ( A, ————d?).
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Fig. 7. Cross-sectional profiles of the logarithm of stretching, log;oA. Cross-sections are located after (a) 4 elements, (b) 12 elements, (¢) 20 elements, (d)

28 elements. The magnitude of logyoA is represented by the color scale at right.

flow. The exponentia stretching rate can be described in
terms of the specific stretching per period «, defined as

. 1
a= m[ﬁln@@] (9)
The specific stretching for a spatially periodic flow is the
direct analog of the Lyapunov exponent in a time periodic
system. For the flow system under investigation, o= 1.233.
The variance of the logarithm of the stretching, o2, is also
plotted in Fig. 6 and increases linearly with the number of
mixer elements. The significance of this variance will be
described later.

The overal structure of the stretching field can aso be
examined. A plot of the spatial distribution of stretching at
several mixer cross-sectionsisshowninFig. 7. Thepositions
of the dots correspond to the cross-sectional position where
the tracked tracers cross the plane. The color of the dots
represents the logarithm of the stretching magnitude,
log,0(A), where A iscalculated viaEq. (9). Thecolor scheme
is shown at the right of the figure: dark blue and light blue
correspond to low stretching, green and yellow to interme-
diate values, and magenta and red to the highest stretching.
A general increasein stretching valueswith progressthrough
the mixer isobserved, consistent with the exponential growth

in mean stretching shown in Fig. 6. On each cross-section, a
distribution of stretching values is observed, with some
regions exhibiting stretching significantly higher than the
mean (yellow areasin Fig. 7(a)) while other regionsexhibit
stretching which is below the mean (green areas in
Fig. 7(d)). Owing to the exponential increase of stretching,
the distribution of A valuesis best described using the prob-
ability density function of the logarithm of stretching values
H,(log,or) = (1/N)dN(log,oA) /dlog,or, which is com-
puted for each periodic plane by counting the number of
pointsdN(log, o)) that have stretching val uesbetweenlog, oA
and log;pA +d(log,pr). Conceptualy, H,(log,gA) can be
interpreted as a spectrum of intensities in the micromixing
process. Fig. 8(a) shows a plot of H,(log;oA) on severa
selected mixer cross-sections (periodic planesafter 4, 12, 20,
28, 36, and 44 mixer elements). The H,,(10g;0A) Vs. 109,04
plots obtained for the Kenics mixer appear qualitatively sim-
ilar to curves which have been reported for chactic regions
of two-dimensional, time-periodic flows such as the cavity
flow [29,30] and the egg-beater flow [5]. Asthe number of
mixer elements increases, stretching accumulates and the
curves shift toward higher valuesof log,oA. After thefirst few
elements, the central portion of the curve beginsto approach
abell-shaped, Gaussian profile which describesthe spectrum
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Fig. 8. (a) Probability density function of thelogarithm of stretching values,
H,(logioA), plotted for 4, 12, 20, 28, 36, and 44 elements. The curves shift
from left to right as the number of mixer elementsis increased. (b) H(¢)
as defined by Eq. (12), plotted for periods n =16, 17, 18, 19, 20, and 21.

of stretching intensities for the bulk of the flow. Such distri-
butions are typical of globally chaotic flows. The curvesalso
exhibit long tails on the high stretching side, indicating that
asubset of points experiencesvery high stretching (whichis
also evident from the cross-sectionsin Fig. 7). The absence
of extended tailsor asignificant ‘bump’ onthelow-stretching
side of the curvesindicates that there are no large islands of
regular, non-chaotic behavior present in the flow.

Another tool that has been applied to characterize the
stretching distributions in two-dimensional chaotic flowsis
the evolution of an asymptotic scaling relation for
H,(logip)). Asdiscussed by Muzzioetal. [4], thestretching
accumulated by an individual vector i from the beginning of
the first period to the end of the nth period, Ao, (i), can be
expressed as the product of the stretchings A;_, ;(i) accu-
mulated during each period j. The central limit theorem pre-
dicts that when the statistics of the stretching multipliersare
independent of the period, H,,(10g;0A) should asymptotically
evolveinto a Gaussian distribution around its mode,

_ 2
_ (logh,,, An)] (10)

Hn(logAOﬂ) = [2’“0-3] s eXpI: (2 2)
Oy

where A, and o2 are the mean and variance of the variable
logA,.- The central limit theorem also predicts that for large
enough n, A, and o2 will evolve linearly with » as

A, =nA and o2=no? (11)

where A and o2 are the mean and variance of the logarithms
of the multipliers for a single period. Fig. 6 illustrates that
linear growth of the mean and variance of logA,,, with the
number of mixer elementsis observed for the Kenics mixer,
confirming the predictions of Eq. (11) for thisflow system.

Using Egs. 10 and 11, Liu et a. [30] proposed an asymp-
totic scaling relationship for H,(10g;0A0,,) intermsof afunc-
tionH( &),

—(&- /1)2]
(207)
={[2ma7]"*H,(logAo,)} """ (12)

H(§)=exp[

which is invariant with the number of flow periods, where
the new variable ¢= (1/n)logA,, was defined as the short-
time Lyapunov exponent. Eq. (12) implies that curves for
H,(10g10/0,,) corresponding to different periods should col-
lapseto aninvariant limit when plotted asH ( £) . Againdraw-
ing the analogy with time-periodicity, Eq. (12) was used to
rescalethe H,(log,oA) distributions for the Kenics mixer for
different numbers of spatia periods, corresponding to differ-
ent numbers of mixer elements. The results are plotted in
Fig. 8(b) for periods 16 through 21. The scaled curvesslowly
collapseto aninvariant solution for most valuesof £ (£<0.8)
asthe number of periodsincreases. Thisrepresentsthemajor-
ity of particle trajectories in the flow. However, the scaling
fails for higher values of &, corresponding to the tails of
H,(log;oA) that are created by a small number of particles
that are present in high stretching regions in the flow. The
breakdown of the scaling relationship for the tail of the dis-
tribution indicates that the initial assumption that the multi-
pliers become uncorrelated is not valid for these high
stretching regions. Similar results were presented by Liu et
al. [30] for the globally chaotic cavity flow, where an invar-
iant scaling solution was obtained for the bulk of the flow,
but the scaling broke down for high stretching regionscreated
by manifolds of periodic points and corner singularities.

In order to examinefurther theregionsof highest stretching
in the Kenics mixer flow system, the points with the top 5%
of A valuesare plotted on six cross-sectionsinFig. 9. A stable
structure existsfor the high stretching regions, asrevealed by
comparing the different cross-sections. In particular, astreak
of high stretching begins near the top right corner of the
vertical mixer element, from where it extends down and to
the right at approximately a 10° angle from the vertical. A
second high stretch streak is symmetrically located, begin-
ning near the bottom left corner of the vertical mixer element
edge. Previous studies of the two-dimensional flow between
eccentric cylinders [3,6] and of the chaotic cavity flow
[29,30] have shown that the short-time spatial structure of
high stretching regionsin the flow is determined by the struc-
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Fig. 9. Cross-sectional profiles showing the points that have the top 5% of values for stretching magnitude A. Cross-sections are located after (a) 2 elements
(1 period), (b) 4 elements (2 periods), (c) 6 elements (3 periods), (d) 8 elements (4 periods), (e) 10 elements (5 periods), (f) 12 elements (6 periods).

ture of the unstable manifolds of hyperbolic periodic points.
In order to extend this idea to three-dimensional flows, peri-
odic points and their associated manifolds were located and
characterized for the Kenics mixer flow system.

In atwo-dimensional, time-periodic flow, aperiod n point
is defined as a fluid point that returns to its initial location
after being convected by the flow for » time-periods. Anal-
ogously, for the three-dimensional, spatially periodic flow
investigated here, thetwo-dimensional cross-sectional planes
after each periodic unit in the Kenics mixer aretreated in the
same manner as the time-periodic snapshots which are used
to construct a two-dimensional Poincaré section. A period n
point is defined asafluid point that returnstoitsinitial cross-
sectional position after being convected by the flow for n
spatial periods in the axia direction (i.e. after traveling
through 2n mixer elements). Periodic points are located by
covering the flow cross-section with alarge number of tracer
particles, tracking the tracers through the flow, and identify-
ing those which return to their initial cross-sectional position
after agiven number of periods. The procedureis refined by
placing higher concentrationsof tracer particlesinthevicinity
of suspected periodic points until the location of the periodic
point is accurately identified.

Once the periodic points are located, the nature of the
pointsis determined by cal culating the deformation tensor F
as

d(F
%= (VW)T-F, F,_,=I (13)

wherel istheidentity tensor. The deformation tensor iscom-
puted along the trajectory followed by the periodic point
using the sametracking software described abovefor position
and stretch tracking. The nature of the periodic point isdeter-
mined by the eigenvalues of F. For dliptic points, some
eigenvalues of F will be complex and the point will be sur-
rounded by an island of regular, non-chaotic flow. For hyper-
bolic points, al eigenvalues of F arereal, and the point will
have stable and unstable manifoldswhich approach andleave
the point (respectively) along the eigendirections of the
deformation tensor.

Two period-1 hyperbolic points were found in the flow in
the Kenics mixer. The points are located symmetricaly, at
(y=0.127R, z=0.984R) and (y= —0.127R, z= —0.984R)
in the mixer cross-section at the plane between periodic seg-
ments. The unstable manifolds for these points were deter-
mined by placing 20 000 tracer particles in a small circle
(radius = 0.7% of R) around the location of the point at the
periodic plane, and tracking the tracers through the flow for
several periods. The results of this tracking are shown in
Fig. 10, which showstwo-dimensional slicesof themanifolds
at periodic intervals. For a three-dimensional flow system,
the manifolds are actually three-dimensional structures; two-
dimensional dices of the manifolds are displayed here to
facilitate visualization and analysis. The structure of the man-
ifold develops slowly at first (through 4 flow periods) and
thetracersreach only asmall region of theflow domain. With
further progressthrough the mixer, thetracersspread to cover
more and more of the flow cross-section. The complete man-
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Fig. 10. Cross-sectional profiles showing the manifolds of the two period-1 hyperbolic points that were found in the flow. Cross-sections are located after (&)
2 elements (1 period), (b) 4 elements (2 periods), (c) 6 elements (3 periods), (d) 8 elements (4 periods), (e) 10 elements (5 periods), (f) 12 elements (6

periods).

ifold for the periodic point is an invariant structure (i.e. the
structure of the manifold is the same when examined at peri-
odicintervals) and hasinfinitelength. After asufficient num-
ber of periods, manifolds that start inside the chaotic region
of the flow will asymptotically approach all pointswithinthe
chaotic region. However, for mixing processesin actua prac-
tice, the number of spatial periodsislimited and themanifold
effects of interest are those that occur for a small number of
periods. Particles initially close to a periodic point travel
along the unstable manifold and experience high stretching,
but only reach alimited region of the overall flow, resulting
in segregated regions of high stretch.

Comparison of the manifolds from Fig. 10(c) and (d)
with the high stretching regions from Fig. 9 reveals a good
qualitative agreement between the structures. The dominant
feature of thelow-period manifold isastreak which emanates
from the period-1 point in quadrant 1 and stretchesdown and
totheright acrosstheflow cross-section (Fig. 10(a—) ), with
a symmetric streak for the quadrant 3 period-1 point. This
corresponds exactly to the most densely populated high
stretching regionsin Fig. 9. For a higher number of periods,
the manifold structure develops branches that fan off from
theinitial streak (Fig. 10(d)). This structure is also evident
in the high stretching plots (most notably in Fig. 9(b)),
athough morefaintly than thedominant streak corresponding
to the lower-period structure of the manifold.

4, Conclusions

Mixing in a Kenics static mixer was simulated by tracking
the motion of a large number of fluid tracer particles via
integration of the equation of motion for each particle. The
agreement of the simulation results with experimental data
from the literature for residence time distributions, striation
evolution, and mixing index verifiesthat the simulation tech-
nique accurately represents the physical system. The match
between simulation and existing experimental results indi-
cates that the simulation technique can be used as atool to
make a preliminary evaluation of mixing performance for a
given mixer geometry.

The stretching histories of fluid tracer particles were also
tracked for tracer elements convected by the flow. Thistech-
nique has been used previously to evaluate mixing and
chaotic behavior in two-dimensional, time-periodic flow
systems. The current results extend the use of thistechnique
for the first time to the direct evaluation of an actua three-
dimensional industrial mixing device. Analysis of fluid fila-
ment stretching indicates that the average stretch grows
exponentially with the number of flow periods, which is a
signature of chaotic flows. Computation of the probability
density function of the logarithm of stretching values,
H,(log,p)), reveals a Gaussian distribution over the central
spectrum of stretching intensities. Particularly, no deviations



D.M. Hobbs, F.J. Muzzio / Chemical Engineering Journal 67 (1997) 153-166 165

from the Gaussian profile are found at low stretching inten-
sities, suggesting that the flow is globally chaotic. A signifi-
cant tail of high stretching intensitiesis also found, however,
where the spatial locations of points with the highest stretch-
ing values correspond to themanifol dsof two period-1 hyper-
bolic points which are present in the flow. A scaling
formalism for H,,(log,0A) based on the central-limit theorem
collapsesthe stretching distributionsto aninvariant limit over
the majority of log,oA values. However, the scaling failsfor
the high stretch tails, indicating that persistent correlations
for the stretching multipliers exist in the high stretch regions.

The results obtained for the Kenics mixer demonstratethat
dynamical systems analysistools can be applied for the anal-
ysis of mixing in ‘real-world’ industrial systems. Coupled
with the use of CFD to compute velocity fields for complex
geometries, particle tracking and stretch tracking provide a
practical means for quantitative analysis of mixing perform-
ance. Computational tools such as these provide the means
to understand better existing mixing systems, and also the
ability to evaluate mixer configurations computationally
before undertaking costly experimental investigation. For
example, aternate configurations of the Kenics mixer could
be generated by varying the geometry of the mixer elements
(length to diameter ratio, twist angle, etc.). The velocity
fields for these aternate configurations could be obtained
from CFD computations, and dynamical systems tools used
to determine quantitatively the relative mixing performance
for the different geometries. Moreover, these tools allow
quantitative comparison of entirely different mixers. In addi-
tion, the Lagrangian tracking tools that have been devel oped
could also be applied to other properties of interest for the
flow system, such as heat or mass transfer, the aggregation
and break-up of fluid drops, and chemical reactions.
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Appendix A. Nomenclature

A parameter representing the coefficient of
variation of an unmixed stream (Eq. (4))
parameter representing the changein
coefficient of variation vs. mixer length
(Eq. (4))

concentration in sample i

average concentration

mixer diameter

cross-sectional arearepresented by each
tracer particle

deformation gradient tensor

o

2o a0

T

F(0) cumulative residence time distribution
F'(0) area-weighted residence time distribution

H,(logyoA)  probability density function of the logarithm
of stretching values

H($) rescaled value for H,(10g,oA), defined in
Eqg. (12)

I identity tensor

fluid filament vector tracked for stretching
computations
lo initial condition for vector |

L axial length of asingle mixer element

N; number of tracer particlesin samplei

N average number of particles per cell

n period

Oin total inlet volumetric flow rate

R mixer radius

Re em _po)D
pty tube Reynolds number, Re "

X vector of particle position (x, y, z)

V(X) particle velocity as a function of position

Dy Uy, U, x-, y-, and z-components of fluid velocity

Vv velocity gradient

X vector of particle position (x, y, z)

Greek letters

a specific stretching per period

A mean of the logarithm of multipliersA; _, ;
for asingle period

A, mean of logA,,, =10010(Ag)

A stretching experienced by vector |

stretching for particle i during the period

fromOton

(Agy geometric average of stretching over all

VECtors on a given cross-section

fluid viscosity

fluid density

normalized residencetime

variance

standard deviation

residence time of a single tracer particle

short-time Lyapunov exponent,

&= (1/n)logho,,
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